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An exact solution is presented of the plane problem of the collision of 
gaseous jets issuing from coaxial channels of finite width with parallel 
walls. By using the theory of gaseous jets with subsonic velocities, the 
problem is reduced to a boundary value problem for Chaplygin’s equation, 
the solution of which is presented in the form of Fourier series. 

Chaplygin [II proposed a method of solution of the problem of subsonic 
jet flow in the case when there is only one specified characteristic 
velocity. Chaplygin’s method was extended by Fal’kovich [2] for the class 
of problems with more than one characteristic velocity. T;lis extension 
allows us to investigate a number of questions in the theory of colliding 
jets. which are of interest in connection with the improvement of the 
theory of a combined jet, developed in the first approximation by 
Lavrent’ ev [33. 

1. Let us consider the collision of gaseous jets issuing from coaxial 

channels of finite width with parallel walls, and with the subsonic velo- 
city v,, on the free surfaces, into a gaseous medium at rest. In view of 
the symnetry of the problem it is sufficient to consider only a half of 
the region of flow (Fig. 1) with one branch of the jet. 

Fig. 1. Fig. 2. 

Here rlB and C.n are the walls of the channels, and ZM and CN are the 
free surfaces of the jet, whilst 6 is the contact surface between the jet 
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streams, with the point of branching at I<. Let TJ~ and v2 be the velo- 

cities of the gas at the sections at infinity AiF and DF in the channels, 

J, and (2, the diameters of the channels, d, the width of the branch of 

the jet at infinity, n the angle between the x-axis and the velocity 

vector at infinity in the jet, whilst 2h is the distance between the out- 

let orifices of the channels. 

Ye shall assume that on the streamline Ef?F the stream function q~ = 0. 

Then, if the discharge of gas across the sections AB and 3F be denoted 

by l/2 q, and l/2 G2 respectively, and the discharge of gas across the 

section MN by l/2 QO, then y = l/2 Q1 on the streamline A9tlvl and y = 
- l/2 Q, on the streamline WA! 

Let us denote by v the velocity, vmax the maxinuni velocity of flow, 

and 8 the angle formed by the velocity vector with the x-axis. Then, 

transforming-to the variables 8 

city hodograph plane the region 

semi-circle CB corresponds to T 

‘Ihe boundary conditions have 

g=o 

S=iQ1 

l/J=0 

and T = v2/v2 
max’ 

we obtain in the velo- 

of flow depicted in Fig. 2, where the 

=T 0' 

the form 

when 0 = 0, 0 <r<,C 

when fj = 0, 71 < r < ro 

when fl= II, 0 <Z<% 

11) = - $ Q2 when f~ = q rz < r < ro 

+=fQ1 when z = zO, 0 <fl<m (1.2) 

11) = - f Qz when z = ro, ,n<e<n 

.4ccordingly, the solution of the problem posed reduces to finding the 

solution of the internal problem of Dirichlet for Chaplygin’s equation 

422 (1 - z) &T +42[1+(p--1)z]~+[1-(2P+1)~1~=0 (1.3) 

in a semi-circular domain. Cere F = l/(y - l), y = cP/cV. 

The solution of the problem will be sought in the for3 

+r = 5 a,Z,,s (z) sin n6 (1.4) 
?I=_1 
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Here the suffix for y corresponds to the number of the subregion of 

the semi-circle, in which the given solution is sought, LY,,,~(T) is the 

integral of the equation 

422(1 --)Z",,,+42[11_(p-1)z]~,/~-~~[1-(2~+l)z]Z*,~=O (1.7) 

which is regular at T = 3, considered by Chaplygin [II; in,,(~) is Cherry's 

function [41, which is the second linearly independent integral of Equa- 

tion (1.7), considered by Fal'kovich [2].The coefficients an, An, Sn, Cn, 

D,, are yet to be determined. 

The stream functions determined !>y means of (1.4) to (1.6) satisfy the 

boundary conditions (1.1). We need now to fulfil the following conditions. 

1. The function y3 must satisfy the conditions (1.2). 

2. l?ie function vys must be the analytic continuation of w1 from t!:e 

region (1) into the region (2), whilst vyJ is the analytic continuation of 

C+I~ from region (2) into the region (3): 

$l = q2, !?? = 2 when z=rl 

*2 =$a, a$$$ 
(O<O<n) (1.8) 

when r=rl 

Conditions (1.2) and (1.8) reduce to the system of equations 

G&q2 (~0) + D&a/2 (T,) = - 2 ~0s run 

(An- an) Gt,2 (~1) + B&x/z @I) = - s 

(An - a,) 2’7~2 (~1) + B&n/2 (~1) = 0 

(A, - G) G/2 (~2) + (Bn - Dn) tn;:! (72) = (- I,“% 

(4 - GJ z’, (~2) + (&i - Dn) L/2 (7.2) = 0 

Since the Wronskian is 

K/2 m= w vn/2 (q, <n/2 @)I = 2 (1 - qp 

then the ultimate solution of the problem will have the form 
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Here 

where 

For later use, we note that 

T'n/e(zv, fv)= wnb(rv)p f,,,(q)= - cos nm 

f’, @fJ) = 2% ( 1 - To fJ 
- zw2 (qJ co9 nm + a1 1 ( ) 

z* 61) 
-Q zJqh@l) + 

+ (- I)“% (s)@*s W2 (TB)} (1.12) 

From solutions (1.3) to (1.121, as particular cases, there follows a 
number of well-known results. For example, from (1.9) with m = r/2, TV = 

d = d there follows Slezkin’s result [S]. We can also obtain 
ZG;Ph’ s1 [6,73 and Chaplygin’s results [ll . 

2. Iat us introduce a system of coordinates c, q with center at the 
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point O’(- (L, 0); the axis of c will make an angle m with the axis of x 
and instead of the angle 8 we shall consider the angle 8 = 8 - m. In what 
follows we are concerned with the stream function vy3. In the chosen 
system of coordinates we shall have [21 

tl _ (1 - rp !y . 
V SC 22& s1n6+ s ag cos6)&3+Q)(z) (24 

where ~~(1) is an arbitrary function. 

Let us determine the coefficient of contraction of the jet. By the 
coefficient of contraction K of an unsymmetrical jet we mean the ratio 
of the minimum width of the jet to the value of the projection of the 
width of the aperture BC on the axis of q 

(2.2) 

Imnediately from Fig. 1 we obtain the coordinates qg and qc of the 
points B and C: 

Tlg=(u+h)sinm+fdlcosm, qc= (a-_)sinm++&cosm (2.3) 

On the other hand, the coordinates of the points B and C can be deter- 
mined from (2.1). Setting T = r0 and integrating (2.1) along the inter- 
vals [O, -ml and [O, TI - ml allowing for (1.12), we obtain qg and qc re- 
spectively. Since ‘1 = 0 when 6 = 0, then q0 (T) = 0. 

Determining the quantity 2h sin m from (2.3) and making use of the 
relation 

)?B-T)C= 
m 

we obtain with the help of (2.2) a formula for the coefficient of con- 
traction of the jet 

i 20° 4n 
x.=sinm ;5,,1&¶-~ 0 > 

h-4 
-~n'(Zo)+SiIl~ -2d,CoSm (2.4) 

where 

In addition to this formula we need the equation of continuity 

Ql + Qa = Qo 
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which can be reduced to the form 

Let us consider a number of particular cases arising from Formula 

(2.4). In the case of infinitely wide channels (-rl = TV = 0) we have 

1 
-=sSjnm sinm- Y ( 1 jI & cc,, (z,J cos 2nm) (I+ ‘e cot m>-’ (2.6) 

IIere the difference c1, - d, has to be interpreted as the distance be- 

tween the points R and C along the y-axis. 

When m = IT/~ (2.6) leads to CLaplygin’s formula cl] 

f=l_LLLq- n cm ( l)nnz (To) 
n=l 4n - 1 

!Yhen -rl = -r2 = -rO we obtain tlie case of collision of free jets. In 

this case (2.4) takes the form 

co 
1 -=sinm(sinm j-l 2 ~~(l-CoS2nm)r,(t,))-_~,o,m (k=$) 

K Tl=l 

When m = n/2, T2 = -rl, u’2 = d, we obtain the coefficient K for the 

problem of the efflux of gas from a vessel, considered by Troshin [71. 

?he formula in this case is 

The case when m = a/2, 71 = T* = T,, < -rS = 1/(2p t l), d, = d, corre- 

sponds to the problem of head-on collision of two gaseous jets of the 

same width, considered by Slezkin [5]. 

In the case of incompressible fluid (2.4) takes the form 

1 
-=sinm{sinmf~~~(~+~)tanh-’ $+ 

+A($-+:) tanh-l$-+Cosmln tan :I}---‘ecosrn (2.7) 

!Iere A = v~/u~, whilst d, is determined from the equation of continu- 

ity 

.?J,dl + v& = 2744 

\aen m = a/2, k = h = 1, we obtain from (2.7) the !?apression [i’] 
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(2.8) 

Nhen l/~ = tan (v/2) this expression reduces to the form indicated 

Zhukovskii [81. When u0 - m we obtain from (2.8) Kirchhoff’s formula 
by 

1 -_=I +$ 
K 

Let us turn to consideration of the Formula (2.6 ). In the case when 

70 = Ts’ we can make use of Frankl’s asymptotic expansion [91 for 

Chaplygin’ s functions: 

(2.9) 

‘Ihe series obtained after substitution of (2.9) in (2.6) fail to give 

rapid convergence. For this we make use of Lindeliif’s formula [lo! 

~f=r(1-s)(-l*s)4-‘+ fg 6(s-n)@$ (2.10) 
?l=Cl n=l n- 

valid in the complex plane of x with a cut along the real axis from 1 to 

Q), when fie S > 1 and S is not an integer. Here r(t) is Euler’s function 

c(t) is Riemann’s function. I 

In the particular case when 1 x 1 = 1, Lindel’df’s formula has the form 

fb&e= O” 

n=1 n 

f r (1 - s) fJ8-1 sin p $- x (--- 1 )“b (s - 2n) B27t 

n=o 
(2n) ! 

(2.11) 

&r= 

sin nfJ 
r(1-s)e”%0s~+ 2 O” (-v5(~--~--1)fJ2n+l (2 12) 

TIC1 n=o (2n + 1) ! 

‘Ihe principal terms of these expansions coincide, apart from the sign, 

with the expressions derived by Sigmund [II and Fal’kovich [121. ‘Ihe 

series in (2.11) and (2.12) converge absolutely when 1 8 1 < 27~. 

IJsing the identity 

1 
4n2-_1= $+ &+ 16n4(h--i) (2.13) 

and substituting (2.11) and (2.13) in (2.6), we obtain approximately 

1 --_= 
K 

sin m { (1 + cr) sin m + 2-‘/J (co + c,P + $ ca) ‘G - 

m (- l)Y4, 
- 29 (m) + $ nzo (2n) I WY} [ 1 -f- * ctg m1-l (2.14) 
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where 

‘p (m> = - +I + co r&-J+c2 g-J - (co + cs) r g/;,, -- cl&)+c3$& 
un = c,2”/‘6 [$ - 2n) + c,2-“6 ($ - 2n) + (co + cg) 2+ x 

x 5 (q - 24 + c,2-y (F - 24 + c32-y (-y - 24 

The coefficients in (2.9) were determined by Fal’kovich [131: 

co = - (x + I)'+ (O), 
2x + 5 

cl=---_ c 
10 ’ * 

= 24na + 70x + 85 

140 (x + I)“’ 
[I(’ (wa 

whilst for the coefficient cQ computations give the following value 

where 

p’ (0) = - 3” # = - 0.72898 

It remains to determine the angle of departure of the jet m, appearing 
in the formula for the coefficient of contraction. Taking for the control 
surface the contour bounding the region of flow (Fig. l), and applying 
Euler’s well-known theorem, we obtain the relation 

d1 (PI+ P1”12) - 4 (Pz + Pa?d2) = 2do (PO + Po”02) cos 772 

expressing the law of momentum. 

(2.15) 

Ilere the indices 1, 2 and 0 relate to values at the sections AB, DF 
and MN, respectively. ?.laking use of the relat.ions 

p, = p” (1 - q+*, p, = p” (1 - GJp (n - 1, 2) 

where p”, p” are the stagnation parameters of the gas, and the equation 
of continuity (2.5), we reduce (2.15) to the form 

Following Formulas (2.2), (2.5) 
were carried out for the case when 
m/set and x = l/4. The results are 
3 and 4, where k = d,/d,. 

and (2.16), numerical computations 
h = 5 m, d, = 5 m, u 
displayed in graphic:1 

= a = 341.1 
form in Figs. 
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Fig. 3. Fig. 4. 

3. As was shown by Sedov [14], f or any unsymnetrical free jet when 

Ta = TS at the surface, levelling out of the velocities occurs at a 
finite distance from the origin of coordinates along a rectilinear seg- 
ment, beyond which downstream there is established uniform sonic flow. 
Having regard to Olaplygin’s equations 

and the differential relation 

dt = cGdlP_ sin6 dg 

(1 - r)P 

where 9 is the velocity potential, we obtain on the surface of the jet 

(3.1) 

Integrating (3.1) along the segment [- m, ‘II - ml, we obtain the form- 
ula for the length of the segment on which equalization of the velocities 
occurs : 

(3.2) 

Here 2J, is determined from (2.5). 

‘Ihe results obtained above for efflux from channels with parallel 
walls can be generalized, as Chaplygin [II showed to the case when the 
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walls of the channel contain an angle g~(q < 1). 

In this case, for example, Formula (2.6), which for the sake of 

simplicity we consider with $I = d, and m = IT/~, takes the form 

1 O” (-1p4n 
-= 
K ++{-$ +W/2)-9~f 4$_@ xnh (%I)} (3.3) 

Here 

@ (+ q) = * [p (I- + 4) - P (1 + f !I)] 

p(x)=~[*(q+o)] (w =#) 
ne function p(x) is tabulated [Xl. For incompressible 

will have the form 

2 -= 
K $sin &a{+- + a(+) + qY (+)} 

By virtue of the known relationships [153 

P(x+ l)=;-_p(x), P (l/s) = -$ , 

we obtain Kirchhoff’s formula from (3.4) when 
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